

 Bob-It-Inventor

1

BUILD

CODE

PLAY

Inhalt

Preface ... 2

Bob-It-Inventor – the fast reaction game ... 3

Building Instructions .. 3

CODE – Programming ... 6

Use motors as movement sensors ... 6

Variables .. 6

Lists .. 7

Broadcast messages ... 7

My Blocks ... 7

The WordBlock program .. 8

Install downloadable program on the Hub ... 11

Play .. 12

Change game parameters .. 12

 Bob-It-Inventor

2

BUILD

CODE

PLAY

Preface
Mindstorms Robot Inventor Set 51515 continues the successful history of the Mindstorms series. The

new generation is compatible with the electronic components of Boost 17101, Spike Prime and

Powered-Up.

As the decisive difference to Boost and Powered-Up, Mindstorms is not generally “remote

controlled” by a PC or Handeheld but the programs can run independently on the Hub.

Unfortunately, the official set only comes with models that are remote controlled. Whereas the Bob-

It-Inventor can be used independently from a PC, as soon as the program is uploaded to the hub.

The Document has three segments:

• BUILD – Building instructions

• CODE – Programming the Hub

• Play - Operate and customize

 Bob-It-Inventor

3

BUILD

Bob-It-Inventor – the fast reaction game
The Bob-It-Inventor is a reproduction of the Bob-It game by Hasbro.

Building Instructions
Bob-It-Inventor can be built with just the parts in the 51515 Mindstorms Inventor set. You do not

need any additional parts besides a PC, tablet, or phone to upload the program.

Route cables down between Hub and motor

Motor at Port D Sensor at Port F

Close to zero position

 Bob-It-Inventor

4

BUILD

Motor at Port E
Route cable down between Hub and motor

Hide cables below cover

 Bob-It-Inventor

5

BUILD

For trouble-free gaming, it is important to properly hide the cables between the lower cover and the

hub. The cables can be routed from the plug directly down to hide them below the hub.

 Bob-It-Inventor

6

CODE

CODE – Programming

Use motors as movement sensors
Besides using a motor to provoke movement, a motor can also be used as a sensor for movements.

Each motor report on its speed, absolute position, relative

position, power, and an interruption of a planned movement.

When used as a pure sensor you will most often evaluate

speed or position. The speed or position can be compared to

a threshold value to start a program sequence via a when…

block or take an if…then decision.

Variables
Variables work as the memory cells for a program. Contrary to script-based programming languages,

you do not have to worry about the correct definition of each variable in the WordBlock language

within the Mindstorms App.

The BobIt-Inventor program remembers the state GameOver as well as the

correct execution of a task in completed by assigning a 0 or 1 to these variables.

In script-based languages you would use a Boolean variable to just remember

False (0) or True (1).

The randomly generated number of the next task is stored in

variable task. It is used to check any player move against the

requested task.

A variable can also take the result of an equation, even if this equation involves the variable itself. The

time limit for a move is multiplied by 0.9 to reduce it by 10% and the result

is directly assigned to the same variable time, again.

The change…by block is used for simple counting. In our case, we use it to keep

track of the players score by counting the successful moves. The change…by

block can also be used to count backwards -1 or change the variable by any other value.

The value of a variable can be used in calculations, as motor

parameters, be displayed on the light matrix or be used in if…then

statements to take decisions. The BobIt-Inventor uses variables for

most of these examples.

 Bob-It-Inventor

7

CODE

Lists
In addition to simple variables, a WordBlock program can also handle lists. A list can store several

values in an organized sequence. These values can then be retrieved one after another or can be

addressed called individually.

Similar to variables, lists are capable to take values even before you start the

program, e.g. via the monitoring menu on the right side of the screen.

Variables and Lists keep remembering their values even after a program has

ended. Therefore, the content of list TaskName is deleted at the very start of

the program and the new values are assigned one after the other. BobIt-

Inventor uses the list to store the names of tasks as strings to

later use it to broadcast the required move. A list can be fed

with values in several different ways. Values can be added one

after the other, as shown above. You can insert a value at a

specific position. Or you replace the value at a specified position

with a new value.

When working with lists, you can retrieve a value from a specific position of a list, search for the

position of a value, get the number of values in a list or check if a certain value is within a list.

Broadcast messages
Broadcast messaging can be used to start several program sequences at a time.

BobIt-Inventor therefore only uses the broadcasting blocks which do not wait for a

sequence to be executed before the program continues its execution. This way,

you can play some tones while changing the animation on the light matrix or resetting the clock at the

same time.

BobIt-Inventor also uses broadcasting blocks to elegantly branch off

into different program parts based on the position of move names

in the list TaskName. The code branches off into the display of

randomly selected moves, without stringing together several if…then blocks.

My Blocks
Similar to broadcast messages, block sequences can be grouped under a self-

defined “My Blocks“. In contrast to broadcasting block, the call of a “My

Block” stops the execution of any block below the “My Block” till the entire

“My Block” sequence is executed. While calling a “My Block”, one or several

parameters can be submitted to the “My Block” sequence. BobIt-Inventor

uses this functionality to transmit the executed move to the Block

Check_Event.

Returns the second value of the list. In our case this is turn

Returns the position number of a value in a list. For push this is 3

Returns the number of values in a list. BobIt has 4 values in TaskName

Checks if a value is in the list. For wave it returns true

 Bob-It-Inventor

8

CODE

The WordBlock program
Bob-It-Inventor is programmed via WorkBlocks. The code is divided in several sub-programs which

are all placed on the same programming canvas.

While starting the program, a list variable is created. The names of the

possible moves are added to the list. The sequence does not matter.

This block is executed to start a new game

Animated arrow to indicate the push on the right button

Wait until button is pressed

Set time limit for moves

Reset score counter

Set last level threshold to 0

Erase flag for game over state

Lift lever up

Set central button LED to green

Start first move

Start new move

Select a random move number

Reset flag for a completed move

Reset wheel position to 0

Display the required move via messaging. Based on the

random number, the text in the TaskName list is broadcastet.

Every time score increased by 5, the time limit is

decreased by 10% via the factor 0.9

The last threshold is stored in variable level

Reset time for next move

 Bob-It-Inventor

9

CODE

The following blocks are used to receive broadcast messages. The messaging enables us to let several

parts of the program run in parallel. Furthermore, we can elegantly realize to branch off to several

different program parts based on a variable.

If no move was executed and GameOver was not

triggered by a wrong move, yet …

…Central LED is set to red to indicate a time limit error

Execute Block GameOver

If GameOver was already executed due to a wrong move,

exceeding the time limit has no effect

This Block starts as soon as the current time limit is exceeded

Self-defined block GameOver is activated after the time limit has past or

when a wrong move is performed.

Set flag to prevent GameOver from being activated multiple times.

Play tones for end of the game. As the tones are activated via

messaging, the program continues to run in parallel

Show number of successfully performed moves

Wait to make sure single digit scores are displayed long enough

Start a new game

Show the number of successful moves

Play two tones when the game is over

Play a tone for a correct move

If the move was already executed correctly, a new move is started

 Bob-It-Inventor

10

CODE

You may want to create your own animations or symbols to display the different moves.

The following blocks are executed as soon one of the monitored events occurs. Every event triggers

the same block Check_event. When the block Check_event is called, it receives a text as a parameter

to describe the event.

 When you wave in front of the sensor…

When you firmly shake the hub…

When you turn by more than 45° …

When you push the lever down…

…move lever up again

Show lines for waving in front of sensor

Show animation for shaking

Show animation for turning the wheel

Show an arrow towards lever

 Bob-It-Inventor

11

CODE

The self-defined block Check_event and its parameter event checks with each execution if the

performed move matches the required move. It then triggers an adequate reaction.

Install downloadable program on the Hub
As an alternative to creating the program yourself, you can download a ready to use version and

upload it via the LEGO Mindstorms APP.

Bob-it.lms

Open your Mindstorms-APP on a PC. Via the menu „File“ and „Open...“ you can load any .lms file

into the APP. The program can then be uploaded to the hub the same way you upload any other

program to the hub.

Check_event is executed after every move

If Game_Over has not been set, yet…

…and if the performed move is the required move…

Delete display

Play tone for correct move

Flag move as correctly completed

Increase score by 1

If the move was wrong …

…set LED to blue to indicate wrong move

…execute block Game-Over

…and the move has not been correctly completed, yet…

 Bob-It-Inventor

12

PLAY

Shake Turn Push Wave

Play
When starting the program, the display shows an animated arrow to the right. Pushing the right

arrow button starts a game.

Different moves will be displayed at random. The player must perform these moves within the given

time limit.

There is only little time to perform the correct move. If the player acts too slow, the game ends with

a tone, the central button lights up red. If a wrong move is performed, the button lights up blue. In

both cases, the number of correct moves is displayed as the final score.

Change game parameters
While the number of correct moves increases, the time limit is decreased by 10% every 5 moves.

You can change the initial time limit as well as the interval and the rate of time decreases to make

the game faster or slower.

Shake

Turn

Push

Wave

Initial time limit in block NewGame

Every 5 moves, the time limit is decreased

Factor 0.9 results in 10% less time

Algorithm to decrease time limit in block NewTask

